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Figure 1. Our acoustic labeling process comprises a) designing label shapes using a SVG editor b) cutting the labels from the paired sides of Velcro 
strips and attaching them to surfaces c) recording the sound generated by separating the two sides d) classifying the labels based on their audio signal. 

ABSTRACT 
We present an early stage prototype of an acoustic labeling 
system using Velcro, a two-sided household adhesive product. 
We create labels by varying the shape of Velcro pieces to 
produce distinct sounds when the two sides are separated, and 
we use an automatic audio classification pipeline to detect 
and classify small sets of labels. We evaluate our classifier 
on four sets of three simple Velcro labels, present a demo 
highlighting potential use cases of these labels, and discuss 
future applications. 

Author Keywords 
Velcro; acoustic; labels; sound; activity sensing. 

CCS Concepts 
•Human-centered computing → Ubiquitous and mobile 
computing systems and tools; 

INTRODUCTION 
Sensing and making use of the signals present in everyday 
life creates potential for novel experiences. Prior work has 
explored the use of airborne electromagnetic noise [15], RF 
waves [13], physical vibrations [14], pressure variations [1], 
multi-modal signals [10], and even real-time crowdsourcing 
[9] for sensing human movements and appliances. Recently, 
researchers have found that sounds can also be used to recog-
nize activities such as a human laugh or a vacuum in-use [8]. 
However, since not every action and object produces a sound 
on its own, alternative methods modify objects to produce au-
dible cues, such as 3D-printed levers and etched lines [12, 5]. 
In practice, many of these audio labeling mechanisms require 

Figure 2. Our four sets of labels include the core set (a, b, c), the ring set 
(d, e, f), the letter set (g, h, i), and the number set (j, k, l). 

specialized tools to produce and create permanent changes to 
objects, which may not be desirable in certain applications. 

We propose an acoustic labeling approach using compact, low-
cost removable labels made from Velcro. We cut labels that 
vary in shape and size and show that these labels produce 
distinguishable sounds. We evaluate our automatic label clas-
sification pipeline on four sets of labels and show how these 
labels can be used to identify the removal of objects from a 
desk or wall in an example scenario. We then discuss further 
applications of this labeling method. 

LET IT RIP: SYSTEM DESIGN 
Our process begins by cutting commercially available Velcro 
into different shapes to create labels. Each label comes as a 
pair with mirrored geometry so that the two sides (the hook 
and loop sides) align when pressed together. 

Cutting and Assembling Velcro 
We design our labels in Adobe Illustrator and generate a SVG 
file from outline shapes. We then use a Brightstar Advantage-
24 Laser Cutter to cut the shapes from large Velcro pieces into 
individual labels. While we use a laser cutter for precision, the 
labels we test are not particularly complex and could be cut 
carefully using scissors. For collecting sound data, we use stiff 
backing support slides to which we attach the labels. Each 
slide measures 2×3 inches, and we use two different materials: 
1/8-inch thick plywood and acrylic. These two materials are 
representative of the different surfaces our Velcro may be 
adhered to for various applications. 
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Figure 3. We evaluate our system on four sets of labels with an average 
accuracy of 82%, 70%, 68%, and 60% for the a) core, b) ring, c) letters, 
and d) numbers, respectively. 

Recording and Processing Audio 
To record our audio data, we use the built-in microphone of 
2019 Macbook Pro Laptop with a sampling rate of 48 kHz. 
We record batches of 10-50 consecutive rips and use PyAu-
dioAnalysis [3] to split them into individual rips by automatic 
silence detection. For each rip we compute five audio features 
– MFCC, chroma, mel spectrogram, spectral contrast, and ton-
netz. Together these features describe the timbre, tone, and 
harmonic changes in the signal [11, 6, 4]. We then normalize 
these features across each dimension and feed them into a 
support vector machine (SVM) [2] for classification. 

Classifier 
To train the SVM, one author recorded 200 rips with 12 label 
shapes (Fig. 2) on two backing materials (24 slides total). For 
testing, four participants recorded 10 rips with each 24 slides. 
In total, our training and testing data consists of 4800 and 960 
rips, respectively. Since the training and testing data were 
recorded in different places with different people, a covariate 
shift exists between the datasets. To account for this shift, 
we remove one testing rip for each label and add it into the 
training set. This process may be considered as a one-step 
calibration in real use cases. 

EVALUATION 
In our exploration of the feasibility of Velcro labels, we evalu-
ate 12 labels, divided into four sets of three labels shown in 
Fig. 2. Each of these sets has different strengths and potential 
applications. Our evaluation results are shown in Fig. 3. 

Our core set of labels contains three geometric shapes – square, 
rectangle, and ring – each with a maximum dimension of 
2-inches. These labels vary noticeably in shape and area 
and produce consistent sounds when ripped. Our classifier 
achieves 90%, 83%, and 72% accuracy on three core shapes. 

In some applications, limited space may be available for at-
taching labels. In this case, it is beneficial to have labels with 
identical outer boundaries but varying internal geometries that 
emit different sounds. We test a set of ring-shaped labels that 
all fit within a 2-inch diameter circular region. Our classifier 
is able to distinguish them at an overall accuracy of 70%. 

Figure 4. Our example application uses six labels and objects a) a cup 
with the ring label, b) mints with the 2 label, c) a mirror with a T label, 
d) a sock with a small square label, e) a wrench with a rectangle label, 
and f) a tape measure with a big square label. 

For other applications, the appearance of labels themselves 
could be used as design features for the objects to which they 
are attached. We create labels with recognizable digits and 
letters to annotate objects both visibly and acoustically. We 
chose three letters and three digits for geometric diversity, and 
our classifier achieved 68% and 60% accuracy, respectively. 

DEMO AND APPLICATIONS 
As an application of our system, we take advantage of both 
the adhesive and audio properties of Velcro to show how our 
system could be used to track the removal of objects from their 
original location. We attach six labels to six objects on a desk 
or wall to evaluate the performance of the classifier applied to 
everyday objects (Fig.4). When any object is removed from 
its position, it emits an audible rip identified by our system. 

For evaluation, we use the same training data recorded from 
our main study, and the same author record 50 rips with each 
of the six objects as testing data. Since the labels are attached 
to very different objects between the training and testing sets, 
we augment the training data with 3 new recorded rips on 
the actual objects to account for the covariate shift. We then 
calculate the accuracy of the classification using the remaining 
47 rips for each of the six objects. 

Our system achieve accuracy greater than 80% for three of our 
six labels, and greater than 50% accuracy on two additional 
labels. Although most of our original training data comes from 
the controlled lab study recorded with wood and acrylic slides, 
our classification pipeline is still able to classify labels when 
affixed to real objects with very different material properties, 
such as socks, and with very different shapes, like cups. 

CONCLUSION AND FUTURE WORK 
We presented an early stage prototype for using Velcro for 
acoustic labeling. We performed an initial analysis and demon-
strated an application using household objects. Further devel-
opment involves building a comprehensive vocabulary of Vel-
cro patterns which are reliably distinguishable by our classifier, 
investigating the consistency of the classifier with respect to 
different speeds and directions of detachment, and enhancing 
the classifier with a superior machine learning model [7]. We 
are also interested in exploring other application scenarios, 
such as customizing the input devices of smart textiles or low-
cost hardware by attaching Velcro to fabrics or cardboard and 
sensing its sound with mobile phones or gaming consoles. We 
look forward to leveraging off-the-shelf materials to make 
computers smarter and more aware of their surroundings. 
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